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Abstract 

In order to distinguish between physical and coordinate effects in an arbitrary gravitational 
field, the space coordinate system and the clock rates must be specified operationally 
apriori. Once this is done, it is no longer possible to set up an initial surface arbitrarily, 
since this operation must be consistent with certain physical experiments, whose results 
depend upon the particular physical situation. A method is given for setting up the initial 
surface, and the time evolution of the system is discussed. 

1. Introduction 

In order to be able to distinguish between changes in the gravitational 
field variables due to physical effects and changes due to coordinate effects 
(Komar,  1958; Basri, 1965), it is necessary to specify the spatial coordinate 
system and the type of coordinate clocks used, from the beginning. The 
process of  setting up a spatial coordinate system in an arbitrary gravitational 
field has been clarified (Basri, 1965, 1966). The time coordinate, on the 
other hand, presents some difficulties, when the spatial frame is chosen 
a priori. For instance, if two clocks are synchronized with a third clock, 
whether these two clocks are synchronous with each other or not depends 
on the particular physical situation. 

I f  we assume that at each spatial point there is a clock, then the locus of 
events which occur when the readings of all the clocks are identical defines a 
constant-time surface. The set of  all constant-time surfaces constitutes a 
global time measure in Einstein's general theory of relativity. In the following 
discussion concerning time and events which occur at the same time, the 
above description of global time is understood. This must not be confused 
with the process of  synchronization. 

We shall restrict the term synchronization to mean Einstein's synchroniz- 
ation convention (Reichenbach, 1958). This convention is shown diagram- 
matically in Fig. 1 ; in this and subsequent figures, the following conventions 
will be adhered to: a non-vertical solid line is a light signal, with the arrow- 
head indicating direction; a dashed line indicates a constant global time 
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surface; and dashed arrows from a to b indicate that b is synchronous with 
a. I f  a light signal leaves particle B at event p, is reflected at event a on 
particle A, and arrives back at B at event q, then the event on particle B 
which is synchronous with event a on A is that event which occurs midway 
in time between the departure and arrival of  the light signals. That  is, if  

tb = tp + �89 tB(p,q) = (t~ -- tp)B (1.I) 

then b is synchronous with a. The event on B which occurs at the same 
global time as event a is the event a', which is in general different than b. 

A 

�89 q) 

~ �89 

P 
dXAB. 

B 

Figure I--Global and synchronized times. 

Thus events on a constant-time surface are not necessarily synchronous. 
In any case, a 'synchronized time' surface may not be possible to establish 
(Landau & Lifshitz, 1962, p. 275), because the synchronization process may 
be neither symmetric nor transitive; moreover, synchronization is only 
defined for neighboring clocks and hence may not be applied over a finite 
interval. It  is not  a defect in the theory that neighboring events on a constant- 
time surface may not be synchronous, as long as the time parameter is 
adequate to describe measurable quantities, some of  which are discussed 
in the next section. 

The purpose of this paper is to discuss the difficulties associated with 
global time, and to show how they can be overcome. Einstein's summation 
convention is used throughout, with Greek indices taking on the values 
0, 1, 2, 3, and the Latin indices the values 1, 2, 3. 



TIME IN GENERAL RELATIVITY 257 

2. Per t inent  E x p e r i m e n t s  

Having chosen the spatial coordinate system and the clocks, we must 
devise a method of setting the clocks with respect to one another. All the 
clocks are set to the same initial value on an initial hypersurface which 
cannot be chosen arbitrarily, but must be established so as to be consistent 
with physical experiments whose results depend upon the particular physical 
situation. Four such experiments, all closely related, are the transitivity and 
symmetry of synchronization, the Sagnac experiment (Sagnac, 1913), and 
the gravitational frequency shift experiment. In order to discuss these, we 
first review some definitions and concepts. 

The gravitational field variables are the metric coefficients, g~,  and the 
space-time line element is related to these variables by 

ds 2 = __gl~ v dx"  dx  v (2.1) 

The three dimensional line element is expressed in terms of the space metric 
coefficients as 

dl2 = Y*s dx~ dxs (2.2) 

and the two sets of metric coefficients are related (Moller, 1955, p. 283) by 

Y~s = g~s - Yl Ys, l'~s = Y~s/(-goo) (2.3) 
where 

7'i = go~/ ( - -goo)  1/2, F i = y J ( - - g o 0 )  1/2 (2.4) 

The primary device for relating times on clocks which are separated in 
space is a light signal sent between them. The equation for a light signal, 
ds = 0, provides a quadratic equation for the time-of-flight of the signal, 
dx  ~ whose solution (Landau & Lifshitz, 1962, p. 272) is: 

dx+ ~ = [Fis(a ) dx  l dxS] 1/2 4- -Pi(a) dx  i (2.5) 

where (Fig. 2) 

dx_  ~ = eta(p,  a')  and dx+ ~ = e ta (d ,  q) (2.6) 

The light signal leaves particle B at p, is reflected at a on A, and returns to 
B atq; the event a' on B occurs at the same (global) time as event a on clock A. 

In the transitivity of synchronization experiment, the event e on clock C 
is synchronized with b on B, which is synchronized with a on A (Fig. 3). 
One then measures the time difference between the events e and d on C, 
where d is synchronous with a on A. From equations (2.5) and (2.6) we get 

ctB(p,q)  = dx+ ~ + dx_  ~ = 2ctB(p, b) (2.7a) 

�89 q) = [ Fls(a) dx]a  dx~a] '/2 (2.7b) 
t r i e ta (a ,  b) = eta(p,  b) - eta(p,  a ) = -F~(a )  dx~n (2.8a) 

= etc(a", b')  (2.8b) 
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Figure 2--Time-of-flight of light signals. 
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Figure 3--Transitivity of synchronization. 
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Similarly, 
Ctc(b', c) = -F , (b)  dx~c (2.9) 

Ctc(a", d) = -F , (a )  dx~c (2.10) 

The events a, a', and a" all occur at the same global time, and so do b and 
b'. With the help of the relation 

dx]c = dx~, + dx~c (2.11) 

Equation (2.10) can be rewritten in the form 

Ctc(a", d) = -F , (a)  dx~B + [/~i(a') -- F,(a) + I',(b) - 
-Fi(a ' ) ]  dxw - F,(b) dxgc (2.12) 

where the additional terms add up to zero. 
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Figure 4--Derivatives, and frequency shift. 

For an arbitrary funct ionfwe define its space and time partial derivatives 
(Fig. 4) as 

f . ,  dX~An = f ( a ' )  -- f (a )  (2.13a) 
and 

f,,o cta(a, e) = f ( e )  - f (a)  (2.13b) 

respectively, where a and e are neighboring events on the same clock A, and 
a' on B occurs at the same time as a. Using this definition, we may rewrite 
equation (2.12), with the help of equations (2.8a-b) and (2.9), as 

Ctc(a", d) = Ctc(a", b') + 1"i, j(a) dx~c dx~B 
-1"i. o(b) dx~c cts(b, a') + Ctc(b', c) (2.14) 
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Bringing the first and last terms on the right side of equation (2.14) over to 
the left, we get 

Ctc(C, d) = F,. ~(a) dx~c dx~,  - F,. o(b) dx~c ct,(b, a') (2.15) 

The interval tc(e, d) is that which is measured in the transitivity of synchron- 
ization experiment. 

The symmetry of synchronization experiment involves only two particles: 
event c on clock A is synchronized with b on B which is synchronized with 
a on A, and one measures the time between the events a and e. The transitivity 
of synchronization experiment reduces to the symmetry of synchronization 

b r - -  

a T .  

I 
A 

J 

Figure 5--Symmetry of synchronization. 
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experiment if we let particles A and C coincide, in which case equation 
(2.1 I) becomes dxgc = - d x ] ~  and d and a become the same event (Fig. 5). 
With these considerations, equation (2.15) becomes 

CtA(c,a) = F,,o(b) dx~BctB(b,a') - 1-'~,j(a) dx~a~dXiAn (2.16) 

A similar experiment which involves a larger number of particles is the 
Sagnac experiment, which measures the difference in arrival times of two 
light signals sent around a closed path in opposite directions. The expression 
for the time difference, as measured by standard clocks, derived from 
equations (2.5) and (2.6) (Basri, 1965), is 

cat  = 2 f O'i,j -- 79, i )df  ij (2.17) 

where d f  is is an area element on the x~x~-surface (i # j ) .  
The gravitational frequency shift experiment requires that two light 

signals be sent from the same point, one after the other (Fig. 4). If  the two 
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signals leave A at events a and e, and arrive at B at events q and r, respec- 
tively, then the difference in arrival times of the two signals is 

t~(q, r) = tB(a', e') + tB(e', r) - tn(a', q) (2.18) 

We may substitute equations (2.5) and (2.6) for the last two terms of 
equation (2.18). Moreover, because a, a' and e, e' are at the same global time, 
t~(a', e') = tA(a,e). If  we consider this time difference to be infinitesimal, 
then we may apply our definition of the time partial derivative, equation 
(2.13b), and the result is 

t~(q, r) = tA(a, e){1 + I'i, o(a) dx i + [(/'i~(a) dx' dxJ)l/2],o} (2.19) 

This can be rearranged slightly to give 

-Pi o(a) dx ~ tB(q, r) " tA(a, e) 1 -- {[/'~j(a) dx i dxi]1/2}, o (2.20) 

The intervals ta(a, e) and tB(q, r) are measured by means of clocks A and B. 
Furthermore, g00 can be measured by comparing clock A to a coincident 
standard clock, and y~j is also measurable, either by using a length- 
measuring instrument and equation (2.2), or by a clock and equation 
(2.7a-b). Thus everything on the right-hand side of equation (2.20) is 
measurable; this gives us a means of measuring the time derivative of ~h. 
Similarly, equations (2.15), (2.16), and (2.17) can be used to calculate 7~, j 
in terms of measurable quantities. Thus experiments used to test the 
symmetry and transitivity of synchronization, and the Sagnac experiment, 
can be considered as different methods of measuring yi, j. The first method 
is perhaps the easiest because it only involves two particles. 

We have discussed several experimental methods of measuring the 
derivatives of y~. Henceforce when we speak of measuring ~h, ~, these 
experiments are implied. 

3. The Initial Surface 

In order to operationally establish the initial surface on which we assign 
the initial time value to all clocks, we must have a method of determining 
the event a' on B which occurs at the same time as the event a on the neighbor- 
ing A. Once this can be done, we can simply begin at some origin and proceed 
from point to neighboring point, radiating outward, determining the events 
which lie on the initial surface. 

Because there are only six independent field equations for the ten un- 
knowns guy, four additional coordinate conditions must be prescribed. 
Ordinarily, three of the four are taken to be got = O, but this does not 
specify the coordinate system operationally. To specify the spatial coordinate 
system, we must prescribe three conditions on the space metric ~'~i, and to 
specify the time coordinate we must prescribe a condition of g00. Once the 
coordinate system is thus specified, we have used up our four coordinate 
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conditions; the values of g01 are then restricted by the field equations, and 
cannot be chosen arbitrarily. 

While the space and time derivatives of ~ (and hence of g01) are measur- 
able, 9t, itself is not. In order to measure 7i, one must be able to measure 
dx+ ~ in equation (2.5), and if that were possible, then simultaneity would 
be absolute rather than relative as is assumed in relativity theory. That is, 
relativity requires that any event betweenp and q (Fig. 2) on B may be con- 
sidered simultaneous with event a on A; but if we could measure dx+ ~ then 
we could determine the one event a' on B which is simultaneous with a. 
One would in effect be measuring the one-way speed of light, which would 
determine a coordinate system from which, by a Lorentz transformation, 
one could obtain a preferred inertial coordinate system, in which the one- 
way speed of light is the same as c, the round-trip speed. 

It follows from the above that the value of ~,, is arbitrary to within an 
additive constant which cannot be measured. The range of possible values 
for this constant depends on whether it is required that causality hold for 
neighboring clocks. This point is discussed in more detail below. If  causality 
is not required, then the constant can be assigned any finite real number. 
Given event a on A, the event a' on B is arbitrary, determined by the choice 
of the three constants for ~,(a), which in turn determine dx+_ ~ on B, by 
equations (2.5) and (2.6). The event a" on C, which occurs at the same time 
as a and a', is not arbitrary (Fig. 3), however; since the space derivatives 
are measurable, the relation 

y,(a') = y,(a) + Yi, j(a) ax~B (3.1) 

determines dx+ ~ on C, again through equation (2.5), which determines the 
event a". 

We are now in a position to enumerate the procedures required to 
establish the initial surface operationally, and to secure all the necessary 
initial data on it. First we must choose a starting point, an origin, say at 
event a on particle A. At this point we must choose three values for the three 
~ .  I f  it is required that the metric reduce to that of special relativity in an 
inertial frame, these three values must be taken to be zero. Three of the six 
y,~ and g00 are fixed by the four coordinate conditions; we must measure 
the remaining three y~j, and repeat the measurements a short time later, to 
obtain the time derivatives of these quantities. The space and time derivatives 
of y~ are then measured; this completes the data at a. Using our chosen 
values of  y, in equation (2.5), we can calculate (not measure) values for 
dx+ ~ from which we may locate the events a', on neighboring particles, which 
occur at the same time as a. The value of y, at the neighboring particles is 
calculated from equation (3.1), and we simply begin all over again, radiating 
outward from the origin along the initial surface, obtaining the initial data 
as we go along. 

This process of  establishing the initial surface is unique once we have 
chosen the three values of yt at the origin. Nothing else is arbitrary, all is 
determined by the gravitational field. 
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4. How a Unique Solution is Obtained 

If we consider the field equations at the initial surface, the curvature 
tensor may be written as (Adler, et al., 1965, p. 212) 

I 1 O0 R~j - ~g g~j, oo + Mij 
Roj = _�89 g~j, oo + Mo~ (4.1) 
R0 0 --1 ~rfJ cr = 26 6~,oo + Moo 

where Mv~ involves only the metric coefficients and their first time deriva- 
tives on the initial surface. If the coefficients are known over the entire 
initial surface, then clearly all orders of space derivatives are known as well. 
Equations (4.1) are ten in number, involving six unknowns g~j, 00. Thus the 
ten field equations can be separated into two parts: six equations of time 
evolution, and four equations amounting to compatibility requirements on 
the initial data (Adler, et al., 1965, p. 215). These four relations can be used 
to reduce the number of measurements discussed at the end of the previous 
section. If  we are measuring all the initial data, the compatibility require- 
ments are automatically satisfied, and the six equations of time evolution 
enable us to compute the six metric coefficients gtj for all time. Values for 
g00 and three of the 9,~ are determined by the coordinate conditions, and 
g0~ can be obtained from equation (2.3) in terms ofg~j and y~j. Thus we see 
that once the coordinate system is chosen and the initial surface is deter- 
mined, the field equations yield a unique solution over all space-time. 

If  sources are involved, we must measure the energy-momentum tensor 
Tv ~ on the initial surface. If  the sources are discrete and uncharged, the 
continuity equation (Moller, 1955), 

T,~;~ = 0 (4.2) 

(the semicolon indicates covariant differentiation), or equivalently, the 
equation of motion, is sufficient to determine the location of the sources for 
all time. Additional equations are necessary whenever non-gravitational 
forces are involved. For instance, if electrical charges are present, Maxwell's 
equations are also needed. In the case of a fluid, we write the energy- 
momentum tensor in terms of the thermodynamic parameters of the fluid. 
Then, for example, a virial expansion [see, for example, Condon & Odishaw 
(1958)], relating these parameters to one another might comprise the further 
relations needed (i.e., an equation of state for the fluid). The virial coefficients 
in the expansion can be obtained from laboratory experiments on the fluid. 

5. Causality 

Ordinarily it is assumed that the arrival time of a light signal must be 
later than its departure time. This assumption would imply dx~ > 0 
(Fig. 2). From this inequality and equation (2.5) we then conclude that 

(y~j dx ~ dx@/2 > ~,~ dx ~ (5.1) 
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Squaring and collecting terms, we get 

(~tj  - ~ ~j)  "dx~ dx  j > 0 (5.2) 

This inequality is true for arbitrary dx  ~; a necessary and sufficient condition 
for this to be true is that all the subdeterminants of the array (y~j - ~+ yj) 
be positive (Moller, 1955, p. 235) i.e., 

~/ij ~j j  ~]jk > ~'~}j'i (~j)2 ~j~/k 
~ ~jk ~kk ~+~k ~'j~k (~,~)2 

~J ~JJ ~+ZJ  (~,~)2, and +>'1++ > ~i  2 (5.3) 

(i # j  # k # i; summation over repeated indices is suppressed, this equation 
only). I f  it is desired that causality hold, then (5.3) must be considered as 
additional constraints on the solution. But since we already have enough 
conditions on the problem to ensure a unique solution, it may not be possible 
to satisfy equation (5.3) for all problems. In the case of the spherically 
symmetric field, for example, the solution using coordinate clocks for which 

goo = --1 + 2 G M / r c  2 

satisfies equation (5.3) everywhere (since yi is identically zero in that case). 
The solution to the same problem using standard clocks yields [Basri, 
1965, equations (11.16), (13.14), (13.18), (13.21) and (13.22)] 

~'It = (I - 2GMZ/rc2) -1 

and 
~1 = G M x ~  r2 c2( 1 - 2GM/rc2)]  - l  

which satisfies (5.3) only in a finite region of space-time. Thus it seems that 
the choice of g00 might in some cases be the deciding factor in whether or 
not causality holds. There is unfortunately no relation derivable from 
equation (5.3) which might give us the general conditions on g00 necessary 
to ensure causality. 

On the other hand, causality for clocks may actually be an unnecessary 
requirement (Landau & Lifshitz, 1962, footnote, p. 273). The equation of 
motion always predicts that any material particle arrives later than a light 
signal. Indeed, no non-physical predictions result from not requiring 
causality, merely a greater latitude in the available choice of coordinate 
clocks. In this case, equation (5.3) is disregarded. 

6. Conclusion 

Having specified the spatial coordinate system and the coordinate clocks, 
we have shown how to construct an initial time hypersurface which is 
consistent with the conditions imposed by any particular physical situation. 
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This construction is unique, aside from three additive constants in the values 
of Yi. These constants can be set to zero by requiring the metric to reduce 
to that of  special relativity in an inertial frame of reference. 

Causality imposes additional conditions which may not be possible to 
satisfy in every situation. However, this causes no difficulties in the 
prediction of  physical results. 

This paper and the work of Basri (1965) complete the clarification of the 
operational foundation of Einstein's general theory of  relativity. 
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